회원가입을 하면 원하는 문장을
저장할 수 있어요!
다음
AWS 이용 중이라면 최대 700만 원 지원받으세요
본문은 요즘IT와 번역가 윌리(Willy)가 함께 만든 해외 번역 콘텐츠입니다. 이 글을 쓴 Dionysia Lemonaki는 코딩 교육 커뮤니티에서 '테크니컬 라이터(Technical writer)'로 활동하고 있으며, 웹 개발, 데이터 과학, 보안 등에 관한 여러 콘텐츠를 작성하고 있습니다. 이번 글은 최근 주목받는 데이터 분석에 관해 살펴보고, '왜 데이터 분석이 중요한 것인지'에 대해 알아보고 있습니다. 또한 데이터 분석을 수행하는 데 필요한 기술이 무엇인지도 설명하고 있습니다.
회원가입을 하면 원하는 문장을
저장할 수 있어요!
다음
회원가입을 하면
성장에 도움이 되는 콘텐츠를
스크랩할 수 있어요!
확인
본문은 요즘IT와 번역가 윌리(Willy)가 함께 만든 해외 번역 콘텐츠입니다. 이 글을 쓴 Dionysia Lemonaki는 코딩 교육 커뮤니티에서 '테크니컬 라이터(Technical writer)'로 활동하고 있으며, 웹 개발, 데이터 과학, 보안 등에 관한 여러 콘텐츠를 작성하고 있습니다. 이번 글은 최근 주목받는 데이터 분석에 관해 살펴보고, '왜 데이터 분석이 중요한 것인지'에 대해 알아보고 있습니다. 또한 데이터 분석을 수행하는 데 필요한 기술이 무엇인지도 설명하고 있습니다.
오늘날 데이터는 어디에나 있습니다. 그리고 우리가 생산하는 데이터는 해를 거듭할수록 증가하고 있습니다. 우리가 사용할 수 있는 데이터의 양은 방대하지만, 이 모든 데이터로 무엇을 할 수 있을까요? 어떻게 사용해야 할까요? 그리고 데이터는 의미하는 바를 어떻게 이해할 수 있을까요?
데이터를 단지 엑셀 파일이나 데이터베이스에 넣어둔 채 들여다보지 않고 분석하지 않는다면 별다른 가치를 얻을 수 없습니다. 데이터 분석가는 도구와 프로세스를 사용하여 데이터에서 의미를 도출하며 데이터의 수집, 수정, 조사, 분석, 인사이트 도출, 지식 내재화를 담당합니다.
이 때문에 데이터 분석가의 수요는 매우 높으며 기업 경영과 과학 분야에서 핵심적인 역할을 수행하고 있습니다. 본 글에서는 데이터 분석이 무엇인지 살펴보고, 왜 모두가 데이터 분석이 중요하다고 말하고 있는지 알아보겠습니다. 또한 데이터 분석 프로세스를 단계별로 자세히 알아보고, 데이터 분석을 수행하는 데 필요한 기술이 무엇인지 살펴보겠습니다.
데이터는 특정 사실이나 정보의 집합을 의미합니다. 데이터는 의사 결정과 계획 수립뿐만 아니라 스토리 텔링에도 매우 중요합니다.
다음과 같이 데이터의 유형을 크게 두 가지로 나누고 있습니다.
정성 데이터는 숫자가 아닌 데이터로, 이미지, 비디오, 텍스트 문서 또는 오디오가 여기에 포함됩니다. 이러한 유형의 데이터는 측정하거나 계산할 수 없습니다. 대신, 사람들이 특정한 대상을 어떻게 느끼는지 알려줍니다. 이는 사람들의 감정, 동기, 의견, 인식뿐만 아니라 편견까지 포함합니다. '무엇을', '왜', '어떻게'와 같은 질문에 답하는 것이 목적이며, 서술형으로 기록되는 데이터입니다.
정량적 데이터는 숫자로 표현되며, 주로 관찰, 설문조사 또는 사용자 인터뷰를 통해 수집합니다. 이러한 유형의 데이터는 셀 수 있고 측정 가능하며 비교할 수 있습니다. 이는 숫자의 크기에 관한 것이며, 수량과 평균 같은 수치를 포함합니다. '얼마나 많이', '얼마나 자주', '얼마나 오래'와 같은 질문에 답하는 것이 목적입니다. 정량적 데이터를 수집하고, 분석하고, 해석하는 행위를 통계 분석 수행이라고 합니다. 통계 분석은 데이터의 기본 패턴과 추세를 파악하는 데 유용합니다.
데이터 분석은 데이터를 정리하고, 변환하고, 조작하고, 검사함으로써 지저분한 원시 데이터에서 유용한 인사이트를 도출하는 작업입니다. 데이터에서 얻은 인사이트는 차트, 그래프 또는 대시보드와 같이 시각적인 형태로 표현됩니다.
이러한 통찰력은 기업이나 조직의 발전에 도움을 줄 수 있습니다. 예를 들어, 의사 결정권자는 실행 가능한 결론에 도달하고 올바른 비즈니스 결정을 내릴 수 있습니다. 또한, 원시 데이터에서 얻은 지식은 회사와 조직이 고객 기반을 확장하고 성과를 개선하면서 수익을 증대로 이어지는 조처를 하도록 도움을 줍니다.
데이터 분석의 핵심은 트랜드를 식별하고 예측하며, 수집 가능한 모든 데이터로부터 패턴과 상관관계를 파악하여 복잡한 문제에 대한 해결책을 찾는 것입니다.
데이터는 지식과 같습니다. 이는 데이터 분석이 모든 기업에 필수적이라는 것을 의미합니다. 관리, 회계, 물류, 마케팅, 디자인, 엔지니어링 등 모든 분야에서 매우 유용하게 활용할 수 있습니다. 그렇다면 데이터를 탐색하고, 데이터에 컨텍스트와 의미를 부여하는 것이 왜 중요한지 알아보겠습니다.
데이터를 분석하여 경쟁업체를 이해하고, 제품 및 서비스를 현재 시장의 요구사항에 맞출 수 있습니다. 또한, 제품과 서비스에 가장 적합한 청중과 인구 통계를 도출하는 데 도움을 줍니다. 이를 통해 효과적인 가격 전략을 세우고 제품과 서비스의 수익성을 확보할 수 있습니다. 캠페인 타깃을 명확하게 지정하고, 청중에게 더 빠르고 효과적으로 도달하기 위해 어떤 광고와 콘텐츠를 사용해야 하는지도 알 수 있습니다.
제품이나 서비스에 적합한 잠재고객이 누구인지 안다는 것은 전반적인 전략 수립에 큰 도움이 됩니다. 즉, 보다 고객지향적이고 고객의 요구에 맞춘 솔루션을 제공할 수 있습니다. 기본적으로 적절한 정보와 도구를 사용하면 제품이나 서비스의 가치와 품질을 파악할 수 있습니다. 또한 제품이나 서비스가 고객의 문제를 해결하는 데 도움이 되는지 확신할 수 있습니다. 이는 결국 비용 절감과 시간 절약으로 이어지기 때문에 제품 개발 단계에서 특히 중요합니다.
데이터를 분석하면 여러분의 제품과 서비스가 경쟁사와 비교하여 시장에서 얼마나 경쟁력이 있는지 측정할 수 있습니다.
먼저, 과거에 가장 큰 성공을 거두고 원하는 결과를 얻은 영역이 어디인지, 즉 나의 강점을 파악할 수 있습니다. 그리고 어려움에 부닥친 취약한 영역을 찾아낼 수 있습니다. 또한, 문제가 실제로 발생하기 전에 문제가 발생할 수 있는 영역을 예측할 수 있습니다. 따라서 사전에 적절한 조치를 하고 문제가 발생하지 않도록 예방할 수 있습니다.
데이터를 분석하면 앞으로 더 집중해야 할 것과 덜 집중해야 할 영역이 어디인지 파악할 수 있습니다. 여러 영역의 성과 달성도를 한눈에 들어오는 표로 만들어 목표를 설정하고 더 나은 기회를 찾아낼 수 있습니다.
관련성 있고 올바르며 정확한 데이터에 대한 데이터 분석을 수행함으로써 어떻게 하면 정보에 입각한 올바른 결정을 내릴 수 있는지 더 잘 이해할 수 있습니다. 데이터 분석은 더 나은 통찰력을 갖는 것을 의미하며, 이는 의사 결정을 개선하고 문제를 해결하는 데 도움이 됩니다. 이 모든 것이 조직의 성장에 도움을 줄 것입니다.
데이터를 분석하지 않거나 데이터가 부족하다면 비즈니스가 성장하는 데 어려움을 겪을 수 있습니다. 지금 여러분이 이와 같은 상황에 있다면, 데이터 분석을 통해 효과적인 미래 전략 수립에 도움을 받을 수 있습니다. 여러분의 사업이 성장하고 있다면, 데이터 분석을 통해 더욱 빠른 성장을 달성할 수 있습니다.
잠재력을 최대한 발휘하고 고객 유지율 향상, 신규 고객 발굴, 더욱 훌륭한 고객 경험 제공과 같은 다양한 목표를 달성하는 데 도움이 될 것입니다.
데이터 분석 프로세스의 첫 번째 단계는 명확한 목표를 설정하는 것입니다. 많은 양의 데이터를 수집하기 전에 실제로 데이터 분석을 수행하는 이유를 먼저 생각하는 것이 중요합니다.
이 단계에서는 비즈니스 목표에 대한 이해도와 인사이트가 가장 중요합니다. 답을 구하고자 하는 질문을 도출하고 장단기 비즈니스 목표를 정의하는 것으로 시작하세요. 분석에 무엇이 필요한지, 어떤 종류의 데이터가 필요한지, 어떤 데이터를 추적하고 측정하고 싶은지 파악하고, 해결하고자 하는 문제가 무엇인지 생각해보세요.
다음 단계는 수집하려는 데이터 유형이 정성적(비수치적, 설명적)인지 정량적(숫자적)인지 분류하는 것입니다. 데이터를 수집하는 방법과 수집하는 소스는 정성적인지 정량적인지에 따라 달라집니다.
다음과 같은 방법으로 관련성 있고 적절한 데이터를 수집할 수 있습니다.
하나 이상의 소스에서 데이터를 수집하고 나면, 해당 데이터의 구조를 이해하는 것이 중요합니다. 필요한 데이터를 모두 수집했는지, 중요한 데이터가 누락되었는지 확인하는 것도 중요합니다.
다양한 소스에서 데이터를 수집했다면 데이터가 구조화되지 않았을 수 있습니다. 구조화되지 않은 원시 데이터는 사용할 수 없습니다. 그리고 모든 데이터가 반드시 좋은 데이터는 아닙니다. 데이터 정제는 데이터 분석 프로세스에서 가장 중요한 부분이며, 데이터 분석가가 대부분의 시간을 여기에 할애합니다.
데이터는 정제되어야 합니다. 즉, 오류를 수정하고 데이터를 가다듬고 정렬해야 합니다. 이는 다음과 같은 작업을 포함합니다.
이 단계를 통해 데이터의 품질을 높일 수 있으며, 정확하고 적합한 데이터에 초점을 맞추어 분석을 수행할 수 있습니다. 관련이 없거나 잘못된 데이터를 사용한다면 데이터 분석에 부정적인 영향을 미치며, 분석 결과도 신뢰할 수 없게 됩니다. 따라서, 최종 분석의 정확도는 본 단계에서 좌우됩니다.
다음 단계는 1단계에서 정의했던 질문과 목표에 따라 데이터를 분석하는 것입니다. 비즈니스의 목표와 방향성에 따라 네 가지 다른 데이터 분석 기술이 사용됩니다.
마지막 단계는 결과를 해석하는 것입니다. 이 단계에서는 일반적으로 데이터 시각화 도구를 사용하여 보고서, 차트, 그래프, 대화형 대시보드를 생성하게 됩니다.
이 모든 것은 이해 관계자와 회사의 경영진 및 의사 결정자에게 여러분이 분석한 내용과 결과를 효과적으로 공유하는 데 도움을 줍니다. 데이터 분석가는 스토리텔러이며, 훌륭한 커뮤니케이션 스킬은 큰 힘이 됩니다. 데이터를 취합하고 내러티브를 만들어 명확하고 직관적이며 간결하게 결과를 제시해야 합니다.
이 단계는 의사 결정과 회사의 향후 비즈니스에 영향을 미칩니다.
데이터 분석가에게 필요한 수학 지식은 어떤 일을 하느냐에 좌우됩니다. 어떤 일은 다른 일보다 더 많이 수학이 필요할 수 있습니다. 수학 박사가 될 필요는 없지만, 최소한 수학의 기초를 이해하고 기본적인 지식이 있다면 큰 도움이 됩니다.
다음은 시작하는 데 도움이 되는 몇 가지 수학 과정입니다.
데이터 분석가는 데이터를 수집하고 분석하며, 패턴을 파악하고, 데이터에서 결론을 도출하기 위해 통계와 확률에 대한 충분한 지식이 필요합니다.
통계의 기본을 다지고 나면 다음과 같은 고급 과정으로 넘어갈 수 있습니다.
데이터 분석가는 관계형 데이터베이스와 상호 작용하며 데이터를 추출하는 방법을 알아야 합니다. 데이터베이스는 데이터를 전자 저장소에 저장해 놓은 것이며, 여기에서 원하는 데이터를 쉽게 검색할 수 있습니다.
관계형 데이터베이스는 일정한 형식을 가지고 있으며, 저장된 모든 데이터는 사전에 정의한 관계를 통해 연결됩니다. SQL은 Structured Query Language의 약자로 관계형 데이터베이스를 조회하고 상호 작용하는 데 사용되는 언어입니다.
SQL 쿼리를 작성하여 데이터에 대한 CRUD(생성, 읽기, 업데이트 및 삭제) 작업을 수행할 수 있습니다.
SQL을 배우려면 다음 자료를 확인해보세요.
데이터 분석가가 프로그래밍 언어를 다룬다면 데이터베이스에서 조회한 데이터의 구조를 바꾸고 조작할 수 있습니다. 데이터 분석 분야에서 가장 많이 사용되는 대표적인 두 언어는 파이썬과 R입니다.
파이썬은 범용 프로그래밍 언어이며, 영어와 유사한 구문으로 초보자에도 쉽게 시작할 수 있습니다. 또한, 데이터 분석에 가장 많이 사용되는 언어 중 하나입니다. 파이썬은 Pandas 및 NumPy와 같은 데이터 조작과 Matplotlib와 같은 데이터 시각화를 위한 풍부한 패키지 및 라이브러리를 제공합니다.
파이썬을 시작하려면 다음과 같은 초보자를 위한 파이썬 과정을 살펴보세요. 언어의 기본적인 내용을 이해하면 Pandas, NumPy 및 Matplotlib과 같은 라이브러리에 대해 배울 수 있습니다.
이러한 라이브러리 사용법을 배울 수 있는 링크입니다.
R은 통계 및 데이터 분석에 사용되는 언어입니다. 즉, 파이썬처럼 초보자에게 친절하지 않습니다. R을 배우기 위한 유용한 링크를 소개합니다.
데이터 시각화는 데이터를 시각적으로 해석하고 표현하는 것입니다. 시각화를 사용하면 그래프, 차트, 대화형 대시보드 등을 생성하고 다른 팀 구성원과 중요한 이해 관계자에게 쉽게 공유할 수 있습니다.
데이터 시각화 도구는 기본적으로 데이터로 이야기를 전달하고 의사 결정을 내리는 데 필요한 작업물을 만드는 데 사용됩니다. 가장 널리 사용되는 데이터 시각화 도구 중 하나는 타블로(Tableau)입니다.
타블로를 배우려면 다음 과정을 확인해보세요.
엑셀은 데이터 분석에 사용되는 가장 필수적인 도구 중 하나입니다. 데이터를 저장하고, 구조와 형식을 갖추며, 계산을 수행하고, 데이터를 요약하고, 트랜드를 파악하고, 데이터를 카테고리로 나누고, 보고서를 만드는 데 사용됩니다. 엑셀을 사용하여 차트와 그래프를 만들 수도 있습니다.
엑셀 사용법을 익히려면 다음 과정을 확인하세요.
지금까지 데이터 분석이 무엇인지, 왜 중요한지, 현장에 뛰어드는 데 필요한 기술이 무엇인지 살펴봤습니다. 본 가이드가 데이터 분석을 위한 여러분의 여정에 도움이 되었기를 바랍니다.
<원문>
위 번역글의 원 저작권은 Dionysia Lemonaki에게 있으며, 요즘IT는 해당 글로 수익을 창출하지 않습니다.