저는 다국적 IT 회사에서 10년 가까이 일하면서 다양한 나라의 개발자와 엔지니어를 만났습니다. 오랜 기간 그들과 협업하는 과정에서 개발자의 영어 구사 능력에 자연스레 관심을 가지게 되었습니다. 한편 그 회사에서 일하는 한국인 개발자들과 함께 할 기회도 많았습니다. 그들이 다른 나라 개발자에 비해 뒤지지 않는 뛰어난 개발 실력을 갖추고도, 오로지 영어 때문에 능력을 온전히 평가받지 못하는 모습 역시 보고는 했습니다. 이번 글에서는 개발자가 영어 공부를 해야 하는 이유를 사실과 데이터에 근거해 살펴보고자 합니다. 글의 마지막에는 제 개인적인 견해를 바탕으로 ‘개발자에게 영어가 중요한 또 다른 이유’를 덧붙이고자 합니다.
소프트웨어 산업에는 하루에도 수십 개의 새로운 약어와 개념이 등장합니다. 특히나 빠르게 변하는 AI 기술 같은 경우라면 더욱 말입니다. AI를 제대로 맛보게 해 준 챗GPT와 같은 LLM이 우후죽순으로 등장하더니, 지금은 또 메타의 라마로 대표되는 SLM 혹은 sLLM이라는 게 나오고, AI를 완성시키는 AGI라는 개념도 이해해야 하는데, 또 검색-증강 생성이라며 RAG라는 말이 심심치 않게 들립니다. 배경 개념을 알고 거기에 쉬운 스토리를 붙이면 이해에 어렵지 않습니다. 최소한 이 글을 끝까지 읽으신다면 RAG에 대한 이해는 제가 책임지겠습니다. 자, 시작합니다.
한창 MSA(Microservices Architecture)로의 전환을 진행하는 중이었던 저희 팀은 새로운 branch 전략이 필요한 상황이었습니다. MSA로 전환하면서 기존 정기 배포 방식은 버리고 수시 배포를 하기로 결정했기 때문이었죠. Git-flow, Github-flow, Gitlab-flow를 포함해 여러 branch 전략을 살펴보았지만, 팀 환경에 꼭 맞는 branch 전략은 없었습니다. 그래서 팀의 요구 사항과 환경에 맞는 branch 전략을 직접 만들기로 결정했습니다.
‘애널리틱스 엔지니어’, 혹은 ‘분석 엔지니어’라고 들어보셨나요? 미국에서는 대략 3~4년 전부터 화제가 되기 시작했고, 한국에서는 작년부터 본격적으로 주목받고 있습니다. 간단히 말해서, 데이터 애널리틱스(분석) 엔지니어는 ‘데이터를 사용하기 쉽게 만들어주는 요리사’라고 할 수 있는데요. 그들의 고객은 바로 데이터 분석가, 마케터, 기획자 등 데이터를 손에 쥐고 일하는 모든 현업 전문가입니다. 이제 데이터 팀은 단순히 데이터를 모으고 분석하는 것을 넘어서, 누구나 데이터를 쉽게 이해하고 활용할 수 있는 환경을 만드는 데 집중하고 있습니다.
UX 디자인에서 퍼소나(Persona)는 ‘어떤 제품 혹은 서비스를 사용할 만한 목표 인구 집단 안에 있는 다양한 사용자 유형들을 대표하는 가상의 인물’을 말합니다. 지금까지 퍼소나에서 가장 신경 썼던 부분은 완성된 퍼소나와 유사한 대상을 찾고, 인터뷰를 진행하는 과정이었는데요. 퍼소나를 잘 구성했어도 더 구체적인 내용을 확인해야, 사용자가 겪고 있는 불편함과 해결 방법을 찾을 수 있기 때문입니다. 오늘 소개할 ‘PersonaChat’은 퍼소나를 만들고 인터뷰함에 있어 시간적, 물리적 한계를 뛰어넘을 수 있도록 도와주는 서비스입니다.
의학의 발전과 인큐베이터의 발명 등으로 신생아의 생존율이 높아진 것처럼, SI산업 또한 SaaS 전환, Agile 도입 등 많은 변화가 있었습니다. 물론, 아직도 수시로 바뀌는 요구사항, 억지 요구로 가득찬 계약을 강요하는 고객, 심각한 인력 수급 문제까지 넘어야 할 산도 많기도 합니다. 오늘은 SI의 음침한 구석이 아니라, 이렇게 좋게 하고 있는 곳도 있다던데, 이건 어때, 모두 이렇게 일하게 되면 얼마나 좋을까 하는 이야기를 같이 나눠보시죠.